Search results for "Quark-gluon plasma"
showing 10 items of 41 documents
J/ψ dissociation cross sections in a relativistic quark model
2003
We calculate the amplitudes and the cross sections of the charm dissociation processes J/\psi \pi => D \bar D, D* \bar D, D \bar D*, D* \bar D* within a relativistic constituent quark model. We consistently account for the contributions coming from both the box and triangle diagrams that contribute to the dissociation processes. The cross section is dominated by the D* \bar D and D* \bar D* channels. When summing up the four channels we find a maximum total cross section of about 2.3 mb at sqrt(s) \approx 4.1 GeV. We compare our results to the results of other model calculations.
Soft-dielectron excess in proton-proton collisions at $\sqrt{s}$ = 13 TeV
2021
Physical review letters 127(4), 042302 (2021). doi:10.1103/PhysRevLett.127.042302
Underlying-event properties in pp and p–Pb collisions at √sNN = 5.02 TeV
2023
We report about the properties of the underlying event measured with ALICE at the LHC in pp and p–Pb collisions at √sNN = 5.02 TeV. The event activity, quantified by charged-particle number and summed-pT densities, is measured as a function of the leading-particle transverse momentum (ptrigT). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different pT thresholds (0.15, 0.5 and 1 GeV/c) at mid-pseudorapidity (|η| 10 GeV/c, whereas for lower ptrigT values the event activity is slightly higher in p–Pb than in pp collisions. The measurements are compared with predictions …
Highly occupied gauge theories in 2 + 1 dimensions : a self-similar attractor
2019
Motivated by the boost-invariant Glasma state in the initial stages in heavy-ion collisions, we perform classical-statistical simulations of SU(2) gauge theory in 2+1 dimensional space-time both with and without a scalar field in the adjoint representation. We show that irrespective of the details of the initial condition, the far-from-equilibrium evolution of these highly occupied systems approaches a unique universal attractor at high momenta that is the same for the gauge and scalar sectors. We extract the scaling exponents and the form of the distribution function close to this non-thermal fixed point. We find that the dynamics are governed by an energy cascade to higher momenta with sc…
Broad excitations in a 2+1D overoccupied gluon plasma
2021
Motivated by the initial stages of high-energy heavy-ion collisions, we study excitations of far-from-equilibrium 2+1 dimensional gauge theories using classical-statistical lattice simulations. We evolve field perturbations over a strongly overoccupied background undergoing self-similar evolution. While in 3+1D the excitations are described by hard-thermal loop theory, their structure in 2+1D is nontrivial and nonperturbative. These nonperturbative interactions lead to broad excitation peaks in spectral and statistical correlation functions. Their width is comparable to the frequency of soft excitations, demonstrating the absence of soft quasiparticles in these theories. Our results also su…
Measurements of the groomed jet radius and momentum splitting fraction with the soft drop and dynamical grooming algorithms in pp collisions at √s = …
2023
This article presents measurements of the groomed jet radius and momentum splitting fraction in pp collisions at √ s = 5.02 TeV with the ALICE detector at the Large Hadron Collider. Inclusive charged-particle jets are reconstructed at midrapidity using the anti-kT algorithm for transverse momentum 60< 80 GeV/c. We report results using two different grooming algorithms: soft drop and, for the first time, dynamical grooming. For each grooming algorithm, a variety of grooming settings are used in order to explore the impact of collinear radiation on these jet substructure observables. These results are compared to perturbative calculations that include resummation of large logarithms at all or…
Evolution of initial stage fluctuations in the glasma
2021
We perform a calculation of the one- and two-point correlation functions of energy density and axial charge deposited in the glasma in the initial stage of a heavy ion collision at finite proper time. We do this by describing the initial stage of heavy ion collisions in terms of freely evolving classical fields whose dynamics obey the linearized Yang-Mills equations. Our approach allows us to systematically resum the contributions of high momentum modes that would make a power series expansion in proper time divergent. We evaluate the field correlators in the McLerran-Venugopalan model using the glasma graph approximation, but our approach for the time dependence can be applied to a general…
Weak and strong coupling equilibration in nonabelian gauge theories
2015
We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of t…
Approach to equilibrium of a quarkonium in a quark-gluon plasma
2018
We derive equations of motion for the reduced density matrix of a heavy quarkonium in contact with a quark-gluon plasma in thermal equilibrium. These equations allow in particular a proper treatment of the regime when the temperature of the plasma is comparable to the binding energy of the quarkonium. These equations are used to study how the quarkonium approaches equilibrium with the plasma, and we discuss the corresponding entropy increase, or free energy decrease, depending on the temperature regime. The effect of collisions can be accounted for by the generalization of the imaginary potential introduced in previous studies, and from which collision rates are derived. An important outcom…
Temperature dependence of η / s of strongly interacting matter: Effects of the equation of state and the parametric form of ( η / s ) ( T )
2020
We investigate the temperature dependence of the shear viscosity to entropy density ratio η/s using a piecewise linear parametrization. To determine the optimal values of the parameters and the associated uncertainties, we perform a global Bayesian model-to-data comparison on Au+Au collisions at √sNN=200 GeV and Pb+Pb collisions at 2.76 TeV and 5.02 TeV, using a 2+1D hydrodynamical model with the Eskola-Kajantie-Ruuskanen-Tuominen (EKRT) initial state. We provide three new parametrizations of the equation of state (EoS) based on contemporary lattice results and hadron resonance gas, and use them and the widely used s95p parametrization to explore the uncertainty in the analysis due to the c…